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We present an efficient and accurate grid method for computations of eigenvalues and eigenfunctions of the
generalized spheroidal wave equation. Different from previous studies, our method is based on the expansion
of the spheroidal wave function by discrete-variable-representation basis functions constructed from the asso-
ciated Legendre polynomials. The differential operator can be expressed analytically on the grid points, which
are the zeros of the associated Legendre polynomials. The resultant potential matrix is simply diagonal and
evaluated directly on the same grid. The corresponding differential equation is thus converted to an eigenvalue
problem of a small matrix, whose eigenvalues and eigenvectors are converged very fast. The wave functions
can then be evaluated accurately at any desired point from the expansion formula with the computed eigen-
vectors. Compared to previous methods, our method is direct and efficient for any parameter c, either small or
large.
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I. INTRODUCTION

There have been many efforts to compute the eigenvalues
and eigenfunctions of the ordinary and generalized spheroi-
dal wave equations �1–12�. The spheroidal wave equations
arise in many research areas such as atomic and molecular
physics, quantum scattering theory, electromagnetic theory,
astrophysics, and cosmology �5,6�. The calculations for large
and complex size parameters remain a challenging problem
�13�.

It is well known that the solutions of generalized spheroi-
dal wave equations are separable in prolate spheroidal coor-
dinates �� ,� ,��. Various computational methods, generally
based on infinite expansions of the wave function in terms of
some basis functions, have been developed. The angular part
of the generalized spheroidal wave function is represented by
a series expansion of associated Legendre polynomials, and
the radial part can be expanded by Jaffe’s method, spherical
Bessel functions, or Coulomb wave functions. The first step
to solve the generalized spheroidal wave equations is to cal-
culate the eigenvalues. There have been several methods
such as infinite continued fractions �1,3�, matrix techniques
�2,4,6�, or direct use of recurrence relations �7�. Also, for
large values of c, asymptotic expansion method can be used
�see �13� and references therein�. Given the eigenvalues, the
expansion coefficients can be found by recursion relation
�2,4,7,9� or matrix eigenvector �6�. If the eigenvalues are
known, the solution can also be obtained by a direct integra-
tion as well �3�.

In the present work, we propose a grid method for solving
the angular generalized spheroidal wave equation. Our grid
method is based on the discrete-variable-representation
�DVR� method. In this method, the wave function is ex-
panded by DVR basis functions constructed from the associ-
ated Legendre polynomials.

In Sec. II, we will first present the DVR grid method,
followed by presentation of another method called five-term
matrix method. Then we will present some numerical results
with these two methods, compared with some previous re-
sults when available. In Sec. III, we will discuss and con-
clude.

II. NUMERICAL METHODS

The angular and radial parts of the generalized spheroidal
wave functions satisfy respectively the following differential
equations �7�:

d

d�
��1 − �2�

d

d�
Smn�c,R1,���

+ �R1� − c2�2 −
m2

1 − �2 + Amn�Smn�c,R1,�� = 0, �1�
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Rmn�c,R2,���

+ �R2� + c2�2 −
m2

�2 − 1
− Amn�Rmn�c,R2,�� = 0, �2�

where −1���1, 1����, and Amn is the eigenvalue �the
separation constant�. When the parameter R1=R2=0, the
above equations reduce to the wave equations for the usual
spheroidal wave functions �14�. In this section, we will first
present our simple DVR grid method for angular wave equa-
tion �1�. For the purpose of comparison, we will then give a
brief description of a five-term matrix method.

A. DVR grid method

The DVR method �or Lagrange mesh method� is a widely
used grid method in many research fields, such as atomic and
molecular physics �15–27�. It is especially very efficient and
accurate for many kinds of eigenvalues problems. In this
kind of method, one constructs a set of basis functions de-
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rived from classical orthogonal polynomials, which are used
to expand the wave function under investigation. Normally,
the differential operator matrix in the equation satisfied by
the wave function can be expressed analytically as a function
of the zeros of some kind of classical orthogonal polynomi-
als of a certain order. At the same time, the potential matrix
in the differential equation is diagonal and can be evaluated
directly on the grid points, i.e., the zeros of the classical
orthogonal polynomials. The DVR method has shown ex-
traordinary accuracy and efficiency in many different prob-
lems. It even finds applications in some time-dependent
problems such as atomic and molecular dynamics in strong
laser fields �28–31�.

Baye and Heenen �16� prescribed a general method to
construct DVR basis functions from any kinds of orthogonal
polynomials. They derived analytically the matrix elements
for kinetic operators for several kinds of orthogonal polyno-
mials. For the purpose of the present work, we are interested
in the Lagrange mesh corresponding to the associated Leg-
endre polynomials. Following Baye and co-workers �16,17�,
one defines

�N�x� = hN
−1/2�1 − x2�m/2 dm

dxm PN�x� , �3�

where PN�x� is the Legendre polynomial of order N, hN is a
normalization constant, and m is a positive integer. The DVR
basis functions �or Lagrange functions� are then given by

f i�x� =
1

�N� �xi�
�N�x�
x − xi

�4�

=
�− 1�i+1	1 − xi

2

	2N + 2m + 1

�N�x�
x − xi

, �5�

where xi �i=1,2 ,3 , . . . ,N−m� are zeros of dmPN�x� /dxm.
According to the prescription in Refs. �16� and �17�, it is

easy to show that for the differential operator

T =
d

dx
�1 − x2�

d

dx
, �6�

the matrix elements are given analytically by �32�

Tij = 
−
1

3
�N + m��N + m + 1� +

m2 + 2

3�1 − xi
2�

, i = j

−
2�− 1�i−j

�xi − xj�2
	�1 − xi

2��1 − xj
2� , i � j .� �7�

Note that the same DVR kinetic matrix for the special case
m=0 and its regularized version for m�0 were recently used
by Vincke and Baye �33� to study energy spectra of the hy-
drogen molecular ion in an aligned strong magnetic field.

In Eq. �1�, one can expand Smn�c ,R1 ,�� in terms of DVR
basis set of Eq. �5� as

Smn�c,R1,�� = �
j=1

N−m

Bj
mnf j��� . �8�

Substituting expansion �8� into Eq. �1� and multiplying both
sides by ��i� j�−1/2f i

����, we finally get after integrating �
over �−1,1�

��
j

Tij + V��i�	ij�Bj
mn = AmnBi

mn, �9�

where the kinetic operator matrices Tij are given by Eq. �7�
and the diagonal elements of potential matrix are calculated
by

V��i� = R1�i − c2�i
2 −

m2

1 − �i
2 . �10�

The eigenvalues Amn can be simply calculated by diago-
nalization of the matrix H=T+V. Moreover, the generalized
angular spheroidal wave function can be analytically evalu-
ated at any value of � by using Eqs. �5� and �8� with the
computed eigenvectors Bj

mn. For given values of m and c, we
get the eigenvalues and eigenvectors for n=m ,m+1,m
+2, . . . from a single calculation.

We have first checked the convergence of the eigenvalues
A00 in Table I for different values of c. As one can see from
Table I, A00 is fully converged for N=10, 20, 40, and 60
when c=1, 10, 50, and 100, respectively. We notice that a
surprisingly small number N is able to give reasonable accu-
racy of the eigenvalues, especially when c is not large. This
fast convergence property of the DVR method was discussed
by Baye et al. �20�; they called it “unexplained accuracy.” In
the present study, similar fast convergence is also observed
in Table II for the wave function S00 at different values of �

TABLE I. Convergence of eigenvalues A00 of ordinary spheroidal wave equation �i.e., R1=0� against the
number of the DVR bases, N, at various values of c. �N is indicated in the parentheses after each eigenvalue.�
The exact results from Ref. �9� are also shown at the bottom line of the table when available.

c=1 c=10 c=50 c=100

A00 �N� 0.31839 �3� 9.23 �10� 49.32 �20� 99.31 �30�
0.31899996 �5� 9.22830424 �15� 49.24498 �25� 99.24818 �40�
0.31900005514691 �8� 9.22830429727 �18� 49.246159 �30� 99.24810112 �50�
0.31900005514689 �10� 9.2283042972500 �20� 49.24615252712 �40� 99.24810110898 �60�
0.31900005514688 �20� 9.2283042972498 �30� 49.24615252711 �100� 99.24810110898 �100�

Ref. �9� 0.319000055146893 9.228304297249945 99.2481011089832
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for c=1 and 100. For the wave function, one typically needs
a slightly larger number of DVR basis functions N than that
needed for a converged eigenvalue A00, especially for large
c. Please note that we have adopted the following simple
normalization for Smn in the present work:



−1

1

Smn
2 �c,R1,��d� = 1. �11�

B. Five-term matrix method

For the purpose of comparison with the current DVR grid
method, we provide here a different method for calculating
eigenvalues and eigenfunctions of the angular generalized
spheroidal wave equation. We call this method “five-term
matrix method,” which is similar to the matrix method pro-
posed by Liu �6� but with the use of a five-term recursion
relations given in Ref. �7� instead of a three-term recursion
relation adopted in Ref. �6�.

We first give a brief summary of the expansion used by
Liu �6�. The solution of Eq. �1� is written in the form of
series �3,6�

Smn�c,R1,�� = e−ic�1−���
k=0

dkPm+k
m ��� . �12�

Inserting expansion �12� into Eq. �1� leads to three-term re-
cursion relation for the coefficients dk,


kdk+1 + ��k − Amn�dk + �kdk−1 = 0, �13�

where


k = − �k + 2m + 1��R1 + 2ic�k + m + 1��/�2�k + m� + 3� ,

�k = �k + m��k + m + 1� + c2,

�k = − k�R1 − 2ic�k + m��/�2�k + m� − 1� , �14�

with the initial condition d−1=0. Recursion �13� can be alter-
natively written as an infinite tridiagonal matrix equation as
follows:

�
�0 − Amn 
0 0 0 0 ¯

�1 �1 − Amn 
1 0 0 ¯

0 �2 �2 − Amn 
2 0 ¯

0 0 �3 �3 − Amn 
3 ¯

] ] ] ] ]

�

�

d0

d1

d2

d3

]

� =�
0

0

0

0

]

� . �15�

The eigenvalues Amn and coefficients dk can be obtained
by calculating the eigenvalues and eigenvectors for the
above matrix equation truncated to the dimension of N.
However, in practice, we find that the convergence of eigen-
values for expansion �12� is very poor when c is large. More-
over, the convergence of the eigenfunctions is even worse for
large c, as pointed out by Rankin and Thorson �4�, and later
by Hadinger et al. �7�. As an example, we have compared in
Table III the convergences of the eigenvalues A00 by two
different methods, i.e., the present DVR grid method and the
three-term matrix method. As we can see from this table, the
latter converges much more slowly than our DVR grid
method. Actually for c=1000, even when the dimension N of
the three-term matrix goes to as large as several thousands,
we are still not able to get any result that is close to the exact
one.

For the purpose of effective comparison with our DVR
grid method, we thus adopt the expansion proposed by
Rankin and Thorson �4�:

Smn�c,R1,�� = �
t=0

atPm+t
m ��� . �16�

Substitution of Eq. �16� into Eq. �1� yields a five-term recur-
sion relation for coefficients at �7�:

g5�t�at−2 + g4�t�at−1 + �g3�t� − Amn�at + g2�t�at+1 + g1�t�at+2

= 0, �17�

where

g5�t� = c2t�t − 1�/��2t + 2m − 1��2t + 2m − 3�� ,

TABLE II. Convergence of the angular wave function S00 against the number of the DVR bases, N, for
c=1 and 100 at different values of �. The wave function is normalized according to Eq. �11�.

c N �=0.0 �=0.2 �=0.5 �=0.8

c=1 8 0.74399910 0.739261702 0.714693795 0.670400151

10 0.743999111239 0.73926170027 0.71469379259 0.6704001506

20 0.74399911126272 0.73926170026223 0.71469379261046 0.67040015058335

50 0.74399911126274 0.73926170026223 0.71469379261046 0.67040015058331

c=100 40 2.3727 0.31957 8.666
10−5 7.38
10−5

60 2.37302196 0.319523376 4.00368
10−6 5.08
10−9

100 2.37302197686894 0.31952338590532 4.011201678
10−6 1.96
10−15

150 2.37302197686894 0.31952338590533 4.011201679
10−6 2.11
10−15
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g4�t� = − R1t/�2t + 2m − 1� ,

g3�t� = c2�2�t + m��t + m + 1� − 2m2 − 1�/

��2t + 2m − 1��2t + 2m − 3�� + �t + m��t + m + 1� ,

g2�t� = − R1�t + 2m + 1�/�2t + 2m + 3� ,

g1�t� = c2�t + 2m + 1��t + 2m + 2�/

��2t + 2m + 3��2t + 2m + 5�� , �18�

with the initial condition a−2=a−1=0. The above recursion
relation �17� can also be recast into the following matrix
form:

�
g3�0� − Amn g2�0� g1�0� 0 0 0 ¯

g4�1� g3�1� − Amn g2�1� g1�1� 0 0 ¯

g5�2� g4�2� g3�2� − Amn g2�2� g1�2� 0 ¯

0 g5�3� g4�3� g3�3� − Amn g2�3� g1�3� ¯

] ] ] ] ] ]

��
a0

a1

a2

a3

]

� =�
0

0

0

0

]

� . �19�

Actually, one can arrive the same Eqs. �18� and �19� by an
application of the direct variational method using associated
Legendre polynomials as the basis set.

Our numerical tests indicate that for the same value of c,
five-term recurrence �17� converges much faster than three-
term recurrence �13�. For large values of c, the inefficiency
and insufficiency of the latter is especially apparent. Accord-
ing to normalization �11� of the wave function, the coeffi-
cients at should be recalculated by using the relation

�
t=0

2

2t + 2m + 1

�t + 2m�!
t!

�at�2 = 1. �20�

C. Numerical results

Now, we present some numerical results for the eigenval-
ues and eigenfunctions for the generalized angular spheroidal
wave function. In Table IV, we list the eigenvalues Amn for
various values of m, n, c, and R1. In the calculations, we only
use the number of DVR basis functions N�120 to get all the
converged eigenvalues for all the cases listed in the tables. It

is also nice to observe that the five-term matrix method dis-
cussed above shows almost as good convergence perfor-
mance as the DVR grid method does. In other words, in the
calculations presented in Table IV by the five-term matrix
method, the converged eigenvalues are achieved when the
dimension of the matrix is taken to be comparable to those
for the number of DVR basis functions used. The compa-
rable accuracies of both methods may not be so surprising if
one compares their expansions �8� and �16� of Smn�c ,R1 ,��,
respectively. In Eq. �8�, Smn is expanded by �N−m� DVR
functions �polynomials of order �N−m−1��, while in Eq.
�16�, if t is truncated to �N−m−1�, Smn is expanded by �N
−m� polynomials of different orders ranging from m to �N
−m−1�. In other words, both expansions are mathematically
equivalent. Indeed, it is somehow a little surprising that, de-
spite the Gaussian quadrature approximation in the DVR
grid method, it can still give results of high accuracy. It is
mainly due to the almost exact representation of the differ-
ential operator and excellent approximation of the quadratic
potential. �The term m2 / �1−�2� in Eq. �10� can actually be
exactly included in the kinetic matrix �16�.� For both the
DVR grid method and five-term matrix method, it is fairly

TABLE III. Comparisons of the convergence of eigenvalues A00 at large values of c for the ordinary
spheroidal wave equation �i.e., R1=0� against the number of the DVR bases, N �or the dimension of the
three-term matrix�, by �a� the present DVR grid method and �b� the three-term matrix method from Eq. �15�.
The exact results from Ref. �9� are also shown at the bottom line of the table when available.

N

c=100 c=1000

�a� DVR grid �b� Three-term �a� DVR grid �b� Three-term

50 99.24810112 3322.0 1281.5 914514.4

80 99.248101108982 990.3 1007.3 860407.4

120 99.248101108977 102.8 999.25395898 790173.8

200 99.248101108972 99.24810110882 999.249812265584 657806.7

300 99.248101108965 99.24810110901 999.249812265379 508847.4

Ref. �9� 99.2481011089832 999.2498122651815
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easy for us to get fully converged eigenvalues for signifi-
cantly large values of c. For example, when c=10 000, we
get the fully converged result of A00=9 999.249 981 22
when N�800. By using the three-term matrix method, we
are unable to get any reasonable result close to this value
even when N�10 000.

As examples, we present in Fig. 1 the lowest four ordi-
nary spheroidal wave functions Smn for different values of
parameters calculated by the DVR grid method. These fully
converged results are calculated under the condition that N
�120. The corresponding results calculated by the five-term
matrix method in these cases are completely numerically
identical to those from the DVR grid method. For the pur-
pose of clarity we thus choose not to show them. However,
we have to emphasize that for the five-term matrix method,
we find much worse convergence of the wave functions than
our DVR grid method in the case where m and c are simul-
taneously large. One example is that when m=20 and c
=1000, our DVR grid method achieves fully converged wave
function S20,20 when N�200 but five-term matrix method
needs the dimension of the matrix N go larger than 800 to get
a similar accuracy. We also notice that higher eigenvalues
converge much more slowly as well for the five-term matrix
method.

III. DISCUSSIONS

In summary, we have presented in this paper a simple,
efficient, and accurate method for computing the eigenvalues
and eigenfunctions of the angular generalized spheroidal
wave equation. Our method is to directly solve this differen-
tial equation on a DVR grid, and the wave function is ex-
panded in terms of DVR basis functions constructed from the
associated Legendre polynomials. Our method is efficient for
any value of c, small or large, and the wave function can be
analytically evaluated at any spatial point from our expan-
sion formula. The efficiency and accuracy are demonstrated
by comparative studies with other methods.

Of course, our method can be naturally applied to the case
when the number c is purely imaginary. Numerical results
have not been shown in the present paper. When the number
c is not purely imaginary, we have also tested our DVR grid
method and five-term matrix method. Both methods actually
work in this case, but the numbering and ordering of the
eigenvalues is quite difficult and messy, as pointed out re-
cently by Barakat et al. �12�.

Finally, we have only investigated the DVR grid method
to the angular equation. However, it should be noted that, in
principle, it is also possible to solve the radial equation using

TABLE IV. Comparisons of eigenvalues Amn for various values of m, n, c, and R1, calculated by different
methods: �a� Liu’s method in Sec. III B 3 of Ref. �6�; �b� DVR grid method in the present work; �c� five-term
matrix method in the present work; and �d� exact results from Ref. �9� when available.

�m ,n� c Method R1=0 R1=1 R1=2

�0,0� 1.0 �a� 0.3190000552 0.1896847197 −0.1543049703

�b� 0.3190000551451 0.1896847196751 −0.154304970278

�c� 0.3190000551469 0.1896847196676 −0.154304970280

�d� 0.319000055146893

25 �a� 24.242093541 24.241685016 24.240459438

�b� 24.242093541233 24.241685015471 24.240459438184

�c� 24.242093541228 24.241685015472 24.240459438188

50 �a� 49.246152523

�b� 49.246152527106 49.246051495767 49.245748401711

�c� 49.246152527108 49.246051495758 49.245748401712

100 �a� 99.248101119

�b� 99.248101108945 99.248075982093 99.248000601309

�c� 99.248101108991 99.248075982074 99.248000601307

�d� 99.2481011089832

�1,9� 1.0 �a� 90.496130233 90.497489135 90.501565970

�b� 90.496130233172 90.497489135053 90.501565969773

�c� 90.496130233165 90.497489135058 90.501565969765

25 �a� 385.72349350 385.72282121 385.72080432

�b� 385.72349350415 385.72282120902 385.72080432062

�c� 385.72349350415 385.72282120901 385.72080432062

�4,8� 1.0 �a� 72.389418915 72.389987373 72.391691694

�b� 72.389418914697 72.389987372799 72.391691694233

�c� 72.389418914698 72.389987372795 72.391691694219

25 �a� 233.57957221 233.57911294 233.57773512

�b� 233.57957220972 233.57911293651 233.57773511743

�c� 233.57957220971 233.57911293651 233.57773511743
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similar DVR grid method with careful choice of the right
DVR basis functions. For instance, the DVR grid method
based on the generalized Laguerre polynomials �16,18� will
be a natural choice for the radial equation. The relevant work
is still under progress.
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